Az MTA–ELTE Lendület Asztrofizikai Kutatócsoport és a Hawaii Egyetemen dolgozó magyar tudósok tanulmánya az egyik legrangosabb asztrofizikai folyóiratban, a Monthly Notices of the Royal Astronomical Society áprilisi számában látott napvilágot.
Az egész világegyetemet kitöltő elektromágneses sugárzás (kozmikus mikrohullámú háttérsugárzás) az ősrobbanás egyik legfontosabb bizonyítéka, amelynek vizsgálata alapvető fontosságú az univerzum fejlődésének megértése szempontjából.
Az ősrobbanás után a világegyetemet kitöltő plazma nem volt teljesen homogén, előfordultak benne kisebb-nagyobb sűrűségingadozások, amelyekből később az univerzum úgynevezett nagy léptékű szerkezetei, a galaxishalmazok tömörülései, illetve a közöttük lévő nagyobb üres térségek, a voidok (angolul üresség – a szerk.) alakultak ki. Utóbbiak igen kevés galaxist tartalmaznak, tipikus méretük hozzávetőlegesen 150 millió fényév. Ennél nagyobb léptékű struktúrák a supervoidok, amelyek jellemzően több kisebb voidot tartalmaznak. A sűrűségingadozások, illetve a velük együtt kialakuló hőmérséklet-ingadozások, nyomot hagytak a ma megfigyelhető kozmikus mikrohullámú háttérsugárzásban is – olvasható a Magyar Tudományos Akadémia honlapján.
A csillagászok az 1990-es évek elején, műholdas megfigyelésekkel bukkantak rá ezekre az igen enyhe, mikrokelvines (a kelvin milliomod része) nagyságrendű hőingadozásokra, amelyekből összeállt a kozmikus mikrohullámú háttérsugárzás hőtérképe. Ezen néhány furcsa terület, úgynevezett a hideg foltok találhatók, amelyek közül a legjelentősebbet 2004-ben fedezték fel. A képződmény 70 mikrokelvinnel tér el a háttérsugárzás átlaghőmérsékletéről, ami az átlagos hőingadozás négyszerese. Létezésére mindmáig nem tudtak kielégítő magyarázatot adni, egy magyarok által vezetett kutatócsoport viszont most meggyőző elmélettel állt elő.
A Frei Zsolt, az ELTE tudományos rektorhelyettese által vezetett Lendület kutatócsoport friss eredménye szerint az eltérést nagy valószínűséggel nem a mikrohullámú háttérsugárzás forrásának hőmérséklet-ingadozása, hanem egy, a forrás és Föld között található óriási szupergalaktikus struktúra okozza egy kozmológiai jelenség, az integrált Sachs–Wolfe-effektus révén. Eszerint a hatalmas, anyagban ritka térrészeken áthaladó elektromágneses sugárzás hullámhossza nő, vagyis a sugárzás „lehűl”, a sűrűbb térrészeken áthaladva pedig csökken a hullámhossz, vagyis a sugárzás „felmelegszik”.
A Naprendszertől 3 milliárd fényévre található supervoidot egy háromdimenziós égtérképen sikerült azonosítani, amelyet az ELTE vendégkutatójaként Hawaiin dolgozó Kovács András, a Pan-STARRS1 távcső és a NASA WISE-űrteleszkópja (széles látószögű infravörös felfedező műholdja) által a látható, illetve az infravörös tartományban készített felvételei alapján állított össze.
„Kutatócsoportunk két éve csatlakozott a Pan-STARRS égtérképező projekthez, amelynek távcsövét a Hawaii Egyetem építette, és amely projektben a világ 10 különböző intézete vesz részt. Ez az első olyan galaxisfelmérés, amely kellő mélységben lefedi az égnek azt a részét, ahol a „hideg folt” található. Kovács András kitartó munkájának eredménye, hogy mi készítettük el először az adatok alapján a felfedezést lehetővé tévő térképet” – mondta Frei Zsolt az mta.hu-nak.
A Kovács András, Frei Zsolt és kutatótársuk, Szapudi István, a Hawaii Egyetem munkatársa, az ELTE-n működő Lendület kutatócsoport külső tagja által felfedezett supervoid még saját kategóriájában is szokatlanul nagynak számít. A magyar csillagászok szerint 1,8 milliárd fényéves átmérőjével ez az ember által valaha felfedezett leghatalmasabb struktúra a világegyetemben. Ez olyan, mintha a területen körülbelül 10 ezer csillagváros hiányozna az átlagos galaxissűrűség alapján várthoz képest.
A jelenlegi mérési adatok alapján még nem jelenthető ki, hogy az észlelt anomáliáért teljes egészében a supervoid tehető felelőssé, azonban a kutatócsoport tervei közt szerepel, hogy eddigi eredményeiket a Pan-STARRS1 és a Dark Energy Survey (sötétenergia-felmérés) újabb adatai alapján tovább pontosítják.