MTA: Karikó Katalin úttörő munkássága új korszakot nyitott

Karikó Katalin úttörő munkássága új korszakot nyitott sokféle betegség kezelésében és megelőzésében – hangsúlyozták a Magyar Tudományos Akadémia hétfői közleményében annak kapcsán, hogy a 2023-as orvosi-élettani Nobel-díjat Karikó Katalin és Drew Weissman kapták megosztva az mRNS-alapú vakcinák kifejlesztését megalapozó felfedezéseikért.

Forrás: MTI2023. 10. 02. 16:24
WEISSMAN, Drew; KARIKÓ Katalin
Philadelphia, 2023. október 2. A Penn Medicine által közreadott, a philadelphiai Pennsylvaniai Egyetemen készített kép Karikó Katalin biokémikusról, aki Drew Weissman amerikai mikrobiológussal megosztva elnyerte az orvosi-élettani Nobel-díjat 2023. október 2-án. A két tudós az mRNS-alapú oltóanyagok kifejlesztését megalapozó felfedezéseivel érdemelte ki az elismerést. MTI/AP/Penn Medicine/Peggy Peterson Fotó: Peggy Peterson
VéleményhírlevélJobban mondva - heti véleményhírlevél - ahol a hét kiemelt témáihoz fűzött személyes gondolatok összeérnek, részletek itt.

Karikó Katalin a Szegedi Biológiai Kutatóközpontban kezdte a tudományos munkát az 1980-as években, és elég gyorsan elköteleződött a hírvivő RNS (mRNS) vizsgálata mellett, amely a DNS-ben tárolt információból segít sejtjeinknek fehérjét készíteni – idézte fel a Magyar Tudományos Akadémia (MTA)  fel a közleményben.

Olyasmi, mintha sejtjeink hatalmas tervrajzkönyvtárából kifénymásolnánk egy lapot, és elküldenénk a gyárnak (vagyis a riboszómának), hogy készítse el, amit ez a tervrajz leír

– magyarázták. Mint írták, a fiatal kutatónő érezte, hogy ezt a mechanizmust nagyszerűen ki lehetne használni arra, hogy kívülről is utasításokat adjanak egy-egy sejtnek különböző hasznos molekulák elkészítésére, lényegében gyógyszergyárként használva saját testünket.

Karikó Katalin ötleteit részben a kor labortechnikai lehetőségeinek korlátai miatt általában nem fogadták kitörő lelkesedéssel, így kutatói életének jelentős részében nem engedhette meg magának, hogy tisztán a mechanizmust kutassa. Kellett egy-egy befutott kutató, hogy valamilyen konkrét projekt kapcsán támogassa, ahol esély mutatkozott az mRNS-technológia alkalmazására – idézték fel, példaként említve, amikor a Pennsylvaniai Egyetem klinikáján stroke-os betegek terápiájában próbálták alkalmazni módszerét. 

Az alapötlet az volt, hogy a stroke után leromlott vérellátású agyterületen érdemes lenne tágítani az ereket. Erre a szervezet a nitrogén-monoxid nevű vegyületet használja, azonban ez a molekula annyira gyorsan átalakul a vérben, hogy injekcióval esély sincs a megfelelő helyre juttatni.

A gondolat az volt, hogy az mRNS segítségével olyan fehérjék tervrajzát juttatják be a sejtekbe, melyek maguk termelik a nitrogén-monoxidot, így megkerülik ezt az időproblémát – írták.

– Az elgondolás, hogy ilyen mRNS-tervrajzokat vigyünk be a sejtekbe briliáns, azonban van vele két probléma. Egyrészt a vírusok jelentős része is pontosan ugyanezt akarja, tehát RNS-molekula formájában bevinni sejtjeinkbe a saját tervrajzát. Másrészt, ha a sejteken kívül bárhol szabad RNS-darabok jelennek meg, az egészen biztosan rosszat jelent, eredeti példánkkal élve: felrobbant a könyvtár épülete és a szél viszi az utcán a tervrajzok lapjait. Vagyis, elpusztult egy saját sejtünk vagy egy betolakodó idegen sejt, és ennek a belseje áramlott ki – mutatták be a jelenséget.

A csupasz RNS-molekulák tehát szervezetünk számára rosszat jelentenek, így beindítják az immunrendszer gépezetét, amely miatt immunreakció, gyulladás és az RNS-darabok gyors megsemmisülése következik be.

A titok nyitja és a megoldás kulcsa az, hogy sejtjeinkben, legalábbis a sejtmagon kívül, nem egészen csupaszok a különféle RNS-molekulák, vagy legalábbis némi testfestéssel élnek

– jegyezték meg.

Karikó Katalin, Drew Weissman és kutatótársaik áttörést jelentő, 2005-ös cikkét a Nature című folyóirat nem tartotta elég jelentősnek a publikálásra, így az Immunity című szakfolyóiratban jelent meg. A cikkben a kutatók sejtjeink egyik alapvető barát-ellenség felismerő rendszerét vázolják fel. Ennek lényege, hogy amikor az mRNS-molekula DNS-kódról készült első kópiája (tehát a tervrajz lapja) elkészül a sejtmagban, a négyféle nukleotid alkotja. Mire azonban a riboszómához jut, ezek az építőkockák sok esetben módosításokon mennek keresztül, például az uridinből itt-ott egy kicsit más szerkezetű pszeudouridin lesz. Az olyan hosszabb életű RNS-típusokban, mint a fehérjéket felépítő aminosavakat hordozó tRNS vagy a riboszómákat alkotó rRNS különösen sok ilyen módosulás van.

Ez vezette a kutatókat a felismeréshez, hogy ezek az apró változások éppen arra jók, hogy egyfajta testfestéssel lássák el az RNS-molekulákat, és így a sejtek (főként egyes immunsejtek) erre kihegyezett receptorai ne kezdjenek el vad vészjelzéseket küldeni, ha találkoznak egy ilyennel.

Az is látszik, hogy jóval több ilyen módosulás található az emlősök sejtjeinek RNS-molekuláiban, mint a baktériumoknál, sőt még arra utaló jeleket is lehet találni, hogy egyes RNS-vírusok e módosításokat mímelve próbálják kijátszani ezt a barát-ellenség felismerő rendszert

– jegyezték meg.

Ha pedig már kiismertük saját sejtjeink RNS-molekuláinak testfestését, ezt a tudást használni is lehet arra, hogy saját üzenetünket barátként kifestve becsempésszük a sejtekbe. Így születtek meg az mRNS-vakcinák, ezt az ötletet használta a Pfizer–BioNTech és a Moderna oltóanyaga a Covid-világjárványban – foglalták össze. Egy jóval a korának technikai felkészültségét megelőző alapkutatási felvetés ért révbe a 2005-ben megjelent Immunity-cikkel, és ez adta a koronavírus-járvány elleni talán leghatékonyabb fegyvert másfél évtizeddel később – összegezték a közleményben, hozzátéve, hogy ha már megvan az a módszer, ahogy genetikai üzeneteket tudunk küldeni sejtjeinknek, már csak újabb, a sejtek működését mélységében feltáró alapkutatásokra van szükség ahhoz, hogy a legváltozatosabb módokon használjuk szervezetünk biokémiai mechanizmusait saját gyógyításunkra.

Karikó Katalin kimutatta, hogy az mRNS immunogén hatását az uridin okozza, aminek helyettesítése természetes nukleozidokkal, elsősorban pszeudouridinnel, megakadályozza a gyulladást és az immunreakciót. Úttörő munkássága új korszakot nyitott sokféle betegség (például a rák) kezelésében és megelőzésében – méltatták a díjazott életművét.

Borítókép: A Penn Medicine által közreadott, a philadelphiai Pennsylvaniai Egyetemen készített kép Karikó Katalin biokémikusról, aki Drew Weissman amerikai mikrobiológussal megosztva elnyerte az orvosi-élettani Nobel-díjat 2023. október 2-án. A két tudós az mRNS-alapú oltóanyagok kifejlesztését megalapozó felfedezéseivel érdemelte ki az elismerést (Fotó: MTI/AP/Penn Medicine/Peggy Peterson)

A téma legfrissebb hírei

Tovább az összes cikkhez chevron-right

Ne maradjon le a Magyar Nemzet legjobb írásairól, olvassa őket minden nap!

Címoldalról ajánljuk

Tovább az összes cikkhez chevron-right

Portfóliónk minőségi tartalmat jelent minden olvasó számára. Egyedülálló elérést, országos lefedettséget és változatos megjelenési lehetőséget biztosít. Folyamatosan keressük az új irányokat és fejlődési lehetőségeket. Ez jövőnk záloga.