A mintegy 5 méter átmérőjű, 5 méter hosszú hengeres óriásdetektor egyik legfontosabb eleme több évig tartó fejlesztési munkát követően augusztusban került a helyére 56 méterrel a föld alatt a Nagy Hadronütköztető (Large Hadron Collider – LHC) 2. ütközési pontjában, az ALICE kísérlet földalatti mérőhelyén. Ezzel lezárult a CERN ALICE kísérlet Időprojekciós Kamrájának (Time Projection Chamber – TPC) modernizálása.
A 2015 óta épített, új elvek alapján fejlesztett detektor, az 1995 táján tervezett előző változatot váltotta le az ALICE hatalmas központi elektromágnesében. Ebben a K+F munkában jelentős feladatot vállalt a Wigner Fizikai Kutatóközpont – olvasható a kutatóközpont közleményében.
„Az ALICE TPC egy részecske-nyomkövető detektor, amely egy, a Nagy Hadronütköztető nehézion fizikai kutatásait célzó, speciális berendezés. A célja nem kevesebb, mint hogy a világegyetem születése utáni pillanatokban keletkezett anyag, a kvark-gluon plazma (Quark-Gluon Plasma – QGP) halmazállapot-tulajdonságait kutassa” – magyarázta a magyar ALICE-csoport vezetője, Barnaföldi Gergely Gábor.
„Az óriásdetektor szerkezetét úgy kell elképzelnünk, mint egy nagy, argon-széndioxid gázkeverékkel töltött hengert, egy kisembernyi lyukkal a közepén. Ebben a belső üregben helyezkedik el a szilíciumlapkákból álló nyomkövető, valamint legbelül a berillium nyalábcső, amiben az ütközések történnek” – teszi hozzá.
A detektorok a TPC korábbi változatában úgynevezett sokszálas proporcionális kamrákból épültek fel, amelyek összesen 72 részből álltak. Az ALICE TPC továbbfejlesztése során most ezeket a „tortaszeleteket” felváltották egy új, az úgynevezett gázelektron-sokszorozó (Gas Electron Multiplier – GEM) technológián alapuló elemek. Ebben a munkában részt vett a Wigner FK-ban Varga Dezső vezetésével működő Innovatív Gázdetektorok Lendület kutatócsoport is.
A GEM technológia újdonsága, hogy lehetővé teszi a folytonos adatkiolvasását a detektorból, így a másodpercenkénti 50000 ólom-ólom ütközések mindegyikében keletkező több tízezer részecskepálya szinte mindegyike rögzítésre kerülhet az új, akár 4 TB/s (Terabájt másodpercenként) sebességű kiolvasórendszernek köszönhetően.